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1. Introduction. The primary purpose-of this paper is to demonstrate
2 method for the determination of the Galois group of a polynomiél equa-
tion with coefficients in a finite field. The problem of determining the
3alois greup ef an arbitrary equatien, where the coefficient fleld is ei-
ther finite or infinite, is neither new nor unsolved. Wilson (1950) com-
cletely solves the problem in the case of the infinite field. The method
of this paper follows that of his in se far as is possible. The author
wishes to thank Professor Wilsen for his aid in the preparation ef this
Daper.

The method of this paper is te determine successively whether the Gals
>is group is or is net contained in each of the subgroups of the symmetric
zroup of degree equal to the degree of the given equation. The informa-
zion so obtained permits us te determine which of these subgroups is the
=2lcis group, or whether the Galois group is the symmetric group. We need
=nly note which subroup contains the Galois group but has no subgroup
sentaining the Galois group.

2, Notation. We shall assume that the polynomial under consideration
is of the ferm
1) p(x) = x" + alxn'1 +eetay=0
w—=re the coefficients a; are numbers in a finite field F. We also re~
zzire that p(x) = O be separable. If the equation is irreducible over F
<==re is no loss of generality in deoing this, since it has been proved
van der Waerden, 1949, p. 189) that any irreducible equation over a Gal-
=== field is separable. Hewever, we shall make no assumption regarding

== reducibility ef the pelynomial under consideration.
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We shall denote by |7 an arbitrary subgroup of the symmetric group,
Sy 1 being the degree of the given polynomial. The Galois group of
the equatien p(x) = O will be denoted by G. Both [ and G will be
considered as permutation groups on n symbols. 7

We shall denote n indeterminants by X;, X5, eeey X and in a simi-
lar manner the reots of p(x) = O shall be denoted by ry, rpy <« In
where the roots are taken in some fixed order. Although the order is fix-
ed it is immaterial which root is denoted by ry, which by rp, etc. The
ry are distinct since we have required that p(x) = O be separable.

3. Determination of G. f7 has been defined to be a fixed group which
is a subgroup of S,. We wish to determine whether or not it is pessible
to find a rational functien fl(xl, Xpy eees Xp) of the n indeterminants
with coefficients in F, which is invariant under the permutations of I
but under no permutation not in M. 1If this is possible, and if
£1(r1, Ty ooy rn) is a number in F and distinct from all the numbers
obtained by applying te fi(rl, Tys eees rn) permitations outside f1 , We
apply the follewing theorem:

THEOREM 1. (MacDuffee, 1940, p. 102) The Galois group G relative to
the ceefficient field F eof a separable equation p(x) = O is uniquely
defined by the following properties:

A: Every rational function with ceefficients in F of the roets of
p(x) = 0 which is invariant under G is equal to a number in F.

B: Every rational function with coefficients in F of the roots of
p(x) = 0 which is equal to a number of P is invariant under G.

We thus have as our problem the follewing:

(a) To construct a rational function fl(xl, Xy ooy xn) with coeff-
icients in F, which is invariant under I , but under no permutations not
in [7, and

(b) To determine whether fy(ry, Ty, eeep Ty) 1is @ rumber in F and
whether or not this number is left invariant by any permutation outside e

We proce=d as follows to set up an equation, called the induced equa-

tion. Define
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n-1 n-2 - 2

(2) 8y(X1s Xps eees Xp) ® X3 Xy e Xn_0Xp_1 s
and define g;(X1, Xps seses X) 5 (1" 1,2, ..., h), as the h func-
tions obtained from gl(xl, Xpy eeey xn) by performing each of thé h per-
mutations of r' upen the xj. Define
3) £1(x1, Xp5 eeey x,) = é gi(xl, Xpy eees Xp)e
Any permutation of [T will leave f; 45?1-T;rariant and any permutation not in
F will change fl into some other rational function of the n indeter-
ainants. with coefficients in F. We say that this second function is con=
jugate to f;. Hence, f1 1is invariant under the permutations of f‘ , but
is altered by any permutation not in =

By using all of the permutations of S, we obtain k functions fj
(i=1, 2, +..y k) where k = n/h. It can be shomn that the f; are dis-
tinct.

Define the induced equation as follews:

) o(y) = ﬁ’[y - £5(ryy Tps e 7 ] -

The function (3) au‘:e= 1not necessarily the only functions of n inde-
terminants invariant under precisely the permutations of I" , hence the in-
&uceé‘equation is not necessarily unique. In some cases this may not pro-
duce the simplest equation induced by F , but it does give at least one
=ethod for obtaining an induced equation.

The following theorem is proved by Wilson (1950):

THEOREM 2. If the equation induced by /7 has no roots in F, then the Gal=-
cis group G is not contained in . 1f the equaticn induced by r' has

at least one non-repeated root in F, then G is either F s Or a sub-
group of I

If the equation (L) has only multiple roets in F, no inference may
oe drawn, since the functions fi(rl, Toyesey rn) are then invariant under
I , but also under permutations not in [ :

We now prove the follewing theorem:

THEEOREM 3. For any given polynemial equation of degree n and an arbi-

trary subgroup /7 of Sps it is pessible ( if the order of [* is not a
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multiple of p, where p is the characteristic of the finite field) to
censtruct an induced equation, depending upon a parameter a, such that
in a finite number of steps we are assured of

(a) finding an induced equation with at least ene non-repeated root

in F, er

(b) finding an induced equatien with ne rcots in F, or

(c) being able to conclude that G S [7.
Preof: Consider the n! functions
(5) g:(Lj) = r:]-rgz... rzle (= Y5025 ey n:)
where the b; are integers and 0< bjSn - i. By considering the
successive adjunction ef Tys Tpy eees Tp te F in that order, it is
cleat that the totality of these functions ferm a basis (net necess-
arily minimal) for the root field of p(x) = 0. If /'C G there is
an intermediate field (fundamental theorem of Galois theory) B belong-
ing te J* such th.t B DF and B is a subfield of the reot field of
p(x) = 0. Since B is a subfield ¢f the root field of P(x) = 0, and

since the g:(LJ) form a basis for the root field, any element in B must

be a linear combmatlon of the g(j). Let
©) i Z ag? (3¢ F)
be such an element or B. Denete by :gij) (C1 =232, ...,. h) the h
functions obtained by applying the h permtations of F to giJ).
Let 5

1 ;ajgij) (4 1,52, sis;oh)

denote the h functiens ebtained frem (&) by applying the h perm-
tations of I'. Since B is the fixed field for [T, T)= T,= 1o = Ty
If h is net a multiple of p, then Ty= l/h(?.‘lq» f2+ ces * f))’
f =1 hi ;= 1/n (J)

g Eem 3 (2 a6l?)]

=1 4-1
._Z 2 {1/}12 EJ},‘ :
J=1 (J)‘ 2 z 3J) 1

If we define f =1/h <8 (3=1, 2, «e.y n.) we shall have a

J 5
basis for B. These fl must constitute a basis since fl Wwas any num-
ber in B and we have shown that it could be expressed in terms of the

fﬁj) . We have defined n. basis elements for a field of at most degree
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k over F, hence this is surely not a minimal basis. Furthermore
there is ne implication that the fg_j) are all distinct.

Since Fc B there must be at least one element in B which is
not in F. Also, since all of the elements ef B are linear comb-

£

inations of the fi‘]) , there must be at least ene net in F.

We now form the i‘\mctio’g’ /
(7 () ‘szi ad-t f:(Lj)
where a is a parameter. Using (7) in lieu of (3) we can obtain as be-
fore the conjugate functions f;(a) and the induced equation which will
now be dependent on our cl'm(oice of the parameter aj;

F(y,a) STTE’ - fi(a)] =0,
We choose k(n! - 1) + ;: ﬁistinct values in F, assuming that this is
possible. If we let a take each of these values in turn we shall have
k(n! = 1) + 1 induced equations, one for each value of the parameter.
If each of these induced equations has a root in F, then some one of
the f3(a) must be a number in F, for at least n: distinct values of
ain F. Let ay (£=1, 2, +es, ni), denote the n! distinct values
a and by (£=1, 2,..., ni), the corresponding values of the f;(a).

From (7) we havel the system
-~

e
(8) Ei ad rP) = b, Cl=d; 2, inh)

"_
The coefficients fgj) in (8) form the Vandermonde determinant, and,

hence is non-vanishing. Since the b , are numbers in F, Cramer's rule
gives each of the fij) as numbers in F. This implies that B = F and
¢ & M contrary te the assumption that r s properly contained in G.
Thus, by assigning to a not more than k(n. -'1) + 1 distinct values
from F, we are assured of either finding an induced equation which has
no roots in F, er being able te conclude that G < /7.

The finite field F may not contain k(n! - 1) + 1 distinct ele-
ments. In this case it is necessary to extend F via a separable poly-
nomial equation, q(x) = O, of degree q in x, such that the degree of

q(x) and p(x) are relatively prime. We also require that q(x) have

coefficients in F and be irreducible in F. Such and equation for any
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degree q is known (Dickson, 1901, pp. 14-18) to exist. Let Fy denote
the root field of q(x) = O over F. Obviously FCF;, since q(x) is
of degree greater than one and F & N where N is the root field of
p(x) = O over F. We also have the relation FjAN = F since the degree
of q(x) was'chosen to be irreducible. Since it is possible to choose
the degree of q(x) = O as large as we please, we may choose it suffi=
ciently large that F; will contain at least k(nt - 1) + 1 distinct
elements. As in the preceding argument, if we let a take each of

these k(n! - 1) *1 distinct values in turn, we will obtain k(ni-1)+1

induced equations. If each of these equations has a root in Fl’ then

(3)

some f;"" must be in Fy for at least n! distinct values of a€ Fpe

We again have the system (8) and Cramer's rule gives each of the
(J) e
i

f; € Fy. The are surely elements of N since they are func-

tions of the roots of p(x) = O, and N is the root field of p(x) =0
over F. Since Fjn N = F, each of the f§jl F and this again im-
plies that G £ /[7., As before, if a is assigned at most k(n: - 1) +1
distinct values from F, we are as ;ured of either obtaining an in-
duced equation which has no roots in Fp, or being able to corclude that
Ge M. If an induced equation has ne roots in Fys then it has ne roots
in F since F € Fy.

L. An Example. In the case of the cubic equation p(x) = x3+bx24cx+d=0
we have four pessibilities for G; namely, the symmetric group ef order
three, 53, the cyclic group C3, the symmetric group of order two, Sy,
and the identity group, I. We have the follewing inclusiens:

532 C32 1

532 C,21
It is clear that we need make only two choices for r'. Those are C3
and S5e f = C3’ we have,

5 S !'ir2 + r1r§ + r§r3

f -rrzorrz-rrzr

2 12 2°3 13
and the induced equation

Z
£ = TTr-8)=y2-(f1+8,) + £,5, =0
41
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It can readily be shown that multiple reots cannot occur in this case.
Using the symmetric function, we have,

£(y) = 3% - (34 = be)y + (c3 + b2 + 942 = bed) = 0
1t I' = 5,, the induced equation is

£(y) = 33 = (34 = be)y? + (342 + b2 = 2bed)y - (&3 - bed) = 0
If b=0, we have f(y) = (y—d)3 = 0 and all three toots are equal to d.

The equation has multiple roots in this case only. A translation of the

73

roots or an application of theorem 3 will work in this case.
S.Summary. The methed of this paper is a censtructive methed whereby

one can determine the Galeis greup, although this may not be the simplest

manner in which the problem can be solved. In the case of the finite

field it is only necessary to determine the irreducible factors of the

polynomial under consideratien. However, in cases of higher degree

this is often a difficult problem. The method as given here reduces the

problem of reducibility to that of determining a linear factor.
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